
Sized Types for Program 
Generation

Caspar Popova
9/18/2025 – PLUM Reading Group



Big picture

• Compiler stress-testing: generating programs that test particular 
optimizations to look for bugs or performance misses

2



Existing work

• Orange (Nagai 2014): arithmetic optimization
• YARPGEN1 (Livinskii 2020): arithmetic
• YARPGEN2 (Livinskii 2023) : loops
• This project: recursion!

3



Focus: recursion optimizations

• Loopification / recursion-to-iteration / recursion elimination
• Recursion fusion
• Mutual recursion elimination
• Recursion twisting

4

Locality Transformations for Nested Recursive Iteration Spaces – Sundararajah 2017
Control Flow Analysis for Recursion Removal – Himpe 2003



Challenge

• Programs generated for compiler testing generally need to 
terminate (especially differential testing)

• → how do we generate recursive, terminating programs?
• YARPGEN2’s approach to terminating loops is unsatisfying, so we 

need another approach

5



Termination checking

• Guardedness predicate
• Sized types
• Well-founded relations
• Recursors/eliminators of inductive types

https://github.com/rocq-prover/rocq/wiki/CoqTerminationDiscussion

Programs 
checked by 
guardedness

Programs 
checked by 
sized types

6



Termination checking

Is Sized Typing for Coq Practical? - Jonathan Chan
A Tutorial on Type-Based Termination – Gilles Barthe

Let f = λx.e be a fixpoint where f : d → θ and d is an inductive type …

• Guard predicate:
• Used in Rocq & Agda
• Condition (e can only make 

recursive calls to f on arguments 
structurally smaller than x) 
enforced syntactically

• Unfold definitions, do reductions
• Sensitive to syntax & not 

compositional

• Sized types
• Inhabitants of inductive 

datatypes are given a size
• Condition (e can only make 

recursive calls on that are size 
smaller than x) enforced via 
types

• Compositional
• Inspired by set-theoretic 

semantics

7



Selected examples in Rocq

• Programs where sized types work better:
• Minus/div composition

• Guardedness works better:
• GCD (doesn’t have a single decreasing argument

• There are some programs that both fail to check without 
modifications

• Ackermann

8



Sized types: tutorial

Size algebra

Natural constructors

A different notation for 
successor constructor

9



Examples

+ : [Nat i; Nat Inf] --> Nat Inf

- : [Nat i; Nat Inf] --> Nat i

div : [Nat i; Nat Inf] --> Nat i

tail : [List i X] --> X

take : [List i X; Nat Inf] --> List i X

append : [List i X; List Inf X] --> List Inf X

10

Size algebra



Subsize relation for subtyping

Nat Inf

Subsizing

Subtyping rule for constructors
Set notion of sizes

11

Size algebra



Type checking: Case

Instantiation for natural numbers with Natk^ as σ

Case typing rule

Nat datatype defn

12



Type checking: Case

Add LAM to bind x

Nat datatype defn

13



Cheat sheet

Reduction rule for fixpoints:

14



Type checking: Rec

Rec typing rule

Extending example with REC

15



Type checking: Recursive application

16



Type production: rec

17

Rec typing rule

Rec production rule



Program generation with sized types

• Adapt sized typing rules into production rules to generate 
terminating recursive programs to test compiler optimizations

18



RQs & evaluation

1. How many recursive calls/steps are taken before base case?
2. Is the new generator more effective at finding *particular*

(recursion related) bugs in compilers?

19



Comments & questions 

20


